Answer :
Given two lines are:
x – y + 1 = 0 …(i)
and 2x – 3y + 5 = 0 …(ii)
Now, point of intersection of these lines can be find out as:
Multiplying eq. (i) by 2, we get
2x – 2y + 2 = 0 …(iii)
On subtracting eq. (iii) from (ii), we get
2x – 2y + 2 – 2x + 3y – 5 = 0
⇒ y – 3 = 0
⇒ y = 3
On putting value of y in eq. (ii), we get
2x – 3(3) + 5 = 0
⇒ 2x – 9 + 5 = 0
⇒ 2x – 4 = 0
⇒ 2x = 4
⇒ x = 2
So, the point of intersection of given two lines is:
(x, y) = (2, 3)
Let m be the slope of the required line
∴ Equation of the line is
y – 3 = m(x – 2)
⇒ y – 3 = mx – 2m
⇒ mx – y – 2m + 3 = 0 …(i)
Since, the perpendicular distance from the point (3, 2) to the line is then
Squaring both the sides, we get
⇒ 49(m2 + 1) = 25(m + 1)2
⇒ 49m2 + 49 = 25(m2 + 1 + 2m)
⇒ 49m2 + 49 = 25m2 + 25 + 50m
⇒ 25m2 + 25 + 50m – 49m2 – 49 = 0
⇒ – 24m2 + 50m – 24 = 0
⇒ – 12m2 + 25m – 12 = 0
⇒ 12m2 – 25m + 12 = 0
⇒ 12m2 – 16m – 9m + 12 = 0
⇒ 4m (3m – 4) – 3(3m – 4) = 0
⇒ (3m – 4)(4m – 3) = 0
⇒ 3m – 4 = 0 or 4m – 3 = 0
⇒ 3m = 4 or 4m = 3
or
Putting the value of in eq. (i), we get
⇒ 4x – 3y + 1 = 0
Putting the value of in eq. (i), we get
⇒ 3x – 4y + 6 = 0
hence, the required equation are 4x – 3y + 1 = 0 and 3x – 4y + 6 = 0
Rate this question :


<span lang="EN-US
RS Aggarwal - MathematicsThe distance betw
RD Sharma - Mathematics<span lang="EN-US
RS Aggarwal - MathematicsFind the equation
RD Sharma - MathematicsFind the equation
RD Sharma - MathematicsArea of the trian
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - MathematicsA point equidista
RD Sharma - Mathematics