Q. 6

# If n(U) = 38, n(A) = 16, n(A ∩ B) = 12, n(B’) = 20, find n(A ∪ B).

Answer :

Using the result n(B) + n(B’) = n(U)

n(B) + 20 = 38

n(B) = 38 – 20 = 18

We have, n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

n(A ∪ B) = 16 + 18 – 12

n(A ∪ B) = 34 – 12 = 22

Hence, n(A ∪ B) = 22.

Rate this question :

If A and B are two sets containing 13 and 16 elements respectively, then find the minimum and maximum number of elements in A ∪ B?

Tamilnadu Board Math Term-IIf A and B are two sets such that A has 50 elements, B has 65 elements and A ∪ B has 100 elements, how many elements does A ∩ B have?

Tamilnadu Board Math Term-IIf A = {a, b, c}, B = {e, f, g}, then A ∩ B =

Tamilnadu Board Math Term-IIf A is a proper subset of B, then A ∩ B =

Tamilnadu Board Math Term-IIf A = {3, 4, 5, 6} and B = {1, 2, 5, 6}, then A ∪ B =

Tamilnadu Board Math Term-IIf A is a proper subset of B, then A ∪ B

Tamilnadu Board Math Term-IIf n(U) = 38, n(A) = 16, n(A ∩ B) = 12, n(B’) = 20, find n(A ∪ B).

Tamilnadu Board Math Term-IThe population of a town is 10000. Out of these 5400 persons read newspaper A and 4700 read newspaper B. 1500 persons read both the newspaper. Find the number of persons who do not read either of the two papers.

Tamilnadu Board Math Term-IIf n(A) = 26, n(B) = 10, n (A ∪ B) = 30, n(A’) = 17, find n(A ∩ B) and n(U).

Tamilnadu Board Math Term-I