Answer :

False

Given that, f : R → R be the function defined by

f (x) = sin (3x+2) ∀ x ∈R

f is invertible if it is bijective that is f should be one-one and onto.

Now, we know that sin x lies between -1 and 1.

So, the range of f(x) = sin (3x+2) is [-1,1] which is not equal to its co-domain.

i.e., range of f ≠ R (co-domain)

In other words, range of f is less than co-domain, i.e there are elements in co-domain which does not have any pre-image in domain.

so, f is not onto.

Hence, f is not invertible.

Rate this question :

How useful is this solution?

We strive to provide quality solutions. Please rate us to serve you better.

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Expertsview all courses

Dedicated counsellor for each student

24X7 Doubt Resolution

Daily Report Card

Detailed Performance Evaluation

RELATED QUESTIONS :

| Let * be a binaMathematics - Board Papers

Find the idMathematics - Board Papers

Let f : A →Mathematics - Exemplar

Show that the binMathematics - Board Papers

Determine whetherRD Sharma - Volume 1

Fill in theMathematics - Exemplar