Q. 84.8( 4 Votes )

# A current of 2A enters at the corner d of a square frame abcd of side 20 cm and leaves at the opposite corner b. A magnetic field B = 0.1 T exists in the space in a direction perpendicular to the plane of the frame as shown in figure. Find the magnitude and direction of the magnetic force on the four sides of the frame.

Answer :

Given-

square of side, *l* = 20 cm

Electric current passing through the wire, *I* = 2 A

Magnetic field, *B* = 0.1 T

The direction of magnetic field is perpendicular to the plane of the frame, coming out of the plane.

Given in the question, that current enters at the corner *d* of the square frame and leaves at the opposite corner *b.*

Hence, angle between the frame and magnetic field, *θ* = 90°

Now, we know-

Magnetic Force on a Current carrying wire is given by

where,

B= magnetic field

I = current

L = length of the wire

and θ = the angle between *B* and *l*

Hence, magnetic force,

For wire along the sides da and cb,

The direction of force can be found using Fleming’s left-hand

rule.

which states that –

whenever a current carrying conductor is placed inside a magnetic field, a force acts on the conductor, in a direction perpendicular to both the directions of the current and the magnetic field

Thus, the direction of magnetic force will be towards the left.

now, for wires along sides, *dc* and *ab*,

Again, here the direction of force can be found using Fleming’s left-hand rule.

Thus, the direction of magnetic force will be downwards.

Rate this question :

A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2A is sent through the coil. Find the magnitude of the magnetic field B, if the torque acting on the coil is 0.2 N m^{–1}.

A circular coil of radius 2.0 cm ahs 500 turns in it and carries a current of 1.0 A. Its axis makes an angle of 30° with the uniform magnetic field of magnitude 0.40 T that exist in the space. Find the torque acting on the coil.

HC Verma - Concepts of Physics Part 2A rectangular loop of sides 20 cm and 10 cm carries a current of 5.0 A. A uniform magnetic field of magnitude 0.20 T exists parallel to the longer side of the loop.

(a) What is the force acting on the loop?

(b) What is the torque acting on the loop?

HC Verma - Concepts of Physics Part 2

A circular loop carrying a current i has wire of total length L. A uniform magnetic field B exists parallel to the plane of the loop.

(a) Find the torque on the loop.

(b) If the same length of the wire is used to form a square loop, what would be the torque? Which is larger?

HC Verma - Concepts of Physics Part 2

Fe^{+}ions are acceleration through a potential difference of 500 V and are injected normally into a homogeneous magnetic field B of strength 20.0 mT. Find the radius of the circular paths followed by the isotopes with mass numbers 57 and 58. Take the mass of an ion = A(1.6 × 10^{–27}) kg where A is the mass number.

A charged particle moves along a circle under the action of possible constant electric and magnetic fields. Which of the following are possible?

HC Verma - Concepts of Physics Part 2A charged particle moves in a gravity-free space without change in velocity. Which of the following is/are possible?

HC Verma - Concepts of Physics Part 2If a charged particle at rest experiences no electromagnetic force,

HC Verma - Concepts of Physics Part 2If a charged particle goes unaccelerated in a region containing electric and magnetic fields.

HC Verma - Concepts of Physics Part 2