Q. 634.3( 6 Votes )
A chain of length
Answer :
The gravitational potential energy of the chain is
The chain is released and slides down the sphere
The tangential acceleration of the chain is
Given
The length of the chain is l, mass of the chain is m, and the radius of the sphere is given as R.
Formula Used
The formula for the total energy in terms of kinetic and potential energy is given as
where
The is the total energy in terms of kinetic and potential energy, m is the mass of the object, g is the acceleration in terms of gravity and l is the length of the object,
is the angle of exit.
Explanation
(a) Let the angle formed by the chain is =
The length of the chain =
Therefore, the angle is written as
The length of the chain in terms of radius is
The force derivative of the chain is given as
The potential energy is calculated as
The P.E. after integration is
(b) The kinetic energy and the potential energy of the chain is equivalent to
The initial potential energy is calculated as
The change in the potential energy is
.
(c) Now to find the tangential velocity we use the equation of
After reduction the value of the is
Rate this question :


A balloon filled
Physics - ExemplarA rocket accelera
Physics - ExemplarA curved surface
Physics - ExemplarA block of mass 1
Physics - ExemplarWhich of the diag
Physics - ExemplarThe kinetic energ
HC Verma - Concepts of Physics Part 1Which of the diag
Physics - Exemplar<span lang="EN-US
HC Verma - Concepts of Physics Part 1The magnetic forc
HC Verma - Concepts of Physics Part 1A particle slides
HC Verma - Concepts of Physics Part 1